
06-11337Introduction to Computer Science The University of Birmingham
Autumn Semester 2002 School of Computer Science
December 3, 2002 cAchim Jung and Uday Reddy

Handout 15
Using stacks: parsing of arithmetic expressions

1. Let us pause for one lecture in our development of abstract data types to study an application of the abstract data type
“stack”: the parsing of arithmetic expressions. This is in fact one of the more complicated tasks of a compiler, the reason
being that the language of arithmetic expressions was made for people, not machines, and so is full of shorthands and
exceptions. Everything else in programming languages is usually highly regular and clearly structured.

2. Expression trees.Let us first study arithmetic expressions in general, before we look at the question how a machine might
deal with them.

Expressions are reallytreesalthough we do not typically write them in this way. Many questions about expressions become
very simple and intuitive if one looks at them in the tree representation. For example, the expression3 + 4 � 5 as a tree
takes the form

+

3 �

4 5

which is clearly different from the tree for the expression(3 + 4) � 5:

43

+

�

5

Furthermore, the difference is expressed in the structure of the tree and it is not necessary to employ brackets. However,
we don’t have the space in our books, generally, to write every expression as a tree; instead we use alinear representation
of trees. There are three possibilities for doing this. If we are given a tree of the general form

op

t1 t2

where “op” is some operation symbol andt1; t2 are subexpressions, then we can write it down in the following ways

op t1 t2 prefix notation
(t1) op (t2) infix notation
t1 t2 op postfix notation

wheret1 andt2 are translated in the same way. A tree which consists of a value only is just written down as it is in any of
these three representations. As an example, take the following tree:

+

3 �

4 5

+

6

1

Its linearisations are++ 3 � 4 5 6 (prefix),(3 + (4 � 5)) + 6 (infix), and3 4 5 �+ 6 + (postfix).

Note that we need brackets only for infix notation; the other two allow an unambiguous reconstruction from the linear
notation back to the tree. As we all know, we can save some brackets in the infix notation by giving different operators
different precedences (for the compiler writer this is another headache, unfortunately).

Prefix notation is sometimes calledPolish notation, postfix is also known asreversed Polish notation.

3. Evaluation of expressions.If we are asked toevaluatea given expression, or if we want to find the assembler instructions
necessary for the evaluation of an expression then by looking at the tree it is fairly easy to see how to proceed: One
first evaluates the two subexpressions and then applies the operator to the resulting two values. The representation which
supports this strategy is obviously postfix. If we are given an expression in infix notation (which is what we usually get
from a user), then we first translate this into postfix and then apply an evaluator to the latter. For both processes we need a
stack.

An evaluator which takes a postfix expression and returns the result is a very simple program; it traverses the input token
by token from left to right and for each token does the following: If the token is a number then this number is pushed onto
a stack, if it is an operator symbol then the two top most values in the stack are popped, the operator is applied to them and
the result is again pushed onto the stack.

declare a stacks, initialized to empty;
while there is more inputdo f

read one item from the input, call itx;
if (x is a number)then pushx ontos;
elsefpop two numbers from the stack, call themb anda;

apply the operatorx to a andb, pushing the result ontos; g
g
pop one item from the stack and output it;

If all goes well then the final result of the expression will be the only element on the stack at the end of the computation.

How can verify that the algorithm works correctly? For this observe that postfix expressions areinductively defined, that
is, one can give a finitegrammar from which every expression can be generated in a unique way. The grammar is very
simple:

pexp ::= number j pexp pexp op

It says that every postfix expression is either a number or of the form two postfix expressions followed by an operator
symbol.

We prove that given any stack, evaluating a postfix expression with the algorithm outlined above, will result in the stack
containing one further entry, which is the value of the expression.

base caseIf the expression consists just of a number then the algorithm pushes it onto the stack.

induction step If the expression has the formpexp pexp op, then the algorithm will start working on it from left to
right. After processing the first subexpression it will, by theInduction Hypothesis, have added the value of that
subexpression to the stack. Continuing the processing it will then add the value of the second subexpression to the
stack, again by the Induction Hypothesis. Finally, the algorithm will process the operator symbol. In this case it will
pop two values from the stack, apply the operator to them, and push the result back to the stack. We know that the two
values popped are just the values of the two subexpressions, so the value that goes back onto the stack is precisely
the overall value of the given expression.

Note how this proof is based closely on the grammar for postfix expressions.

4. Translation into postfix notation. The more complicated task is to translate from infix to postfix. Since in infix we
have the order “subexpression, operator, subexpression” and we want to bring the operator to the end, we need to save
the operator somewhere and output it only after the second subexpression has been processed. Let us write down our first
attempt at a translation algorithm:

Procedure 1: (tentative)
declare a storage cells, initialized to empty string;
while there is more inputdo f

read one item from the input, call itx;
if (x is a number)then outputx;
else if(s non-empty)then f

output the contents ofs;
putx into s; g

g
if (s non-empty)then outputs

2

The storage cells is used to remember an operator until its second operand is output.

This works fine for expressions like3 + 4� 5 + 6� 7, where all operators have equal precedence. If we want to process
expressions which contain operators of different precedence, such as+ and�, we need to be more careful as to when to
output an operator.

If we are given an infix expression of the form “subexpression, operator1, subexpression, operator2, subexpression” then it
depends on the precedences of operator1 and operator2 whether we should first evaluate the first three items or the last three
items. In the first situation we transfer the first operator to the output and store the second one until the third subexpression
is processed. If we are in the second situation (for example, if operator1 is+ and operator2 is�), then we need to store
the second operator, output the third subexpression and then output operator2 and operator1. It follows that we need two
places where to save operator symbols:

Procedure 2: (tentative)
declare storage cellss0 ands1, initialized to the empty string;
while there is more inputdo f

read one item from the input, call itx;
if (x is a number)then outputx;
elsef

if (s1 is non-empty)then output and clears1;
if (s0 is non-empty and precedence(s0)� precedence(x)) then

output and clears0;
if (s0 is empty)then

putx into s0;
elseputx into s1;

g
g
if (s1 non-empty)then outputs1;
if (s0 non-empty)then outputs0;

In this algorithm,s0 holds the last lower precedence operator (+ or�) whereass1 holds the last higher precedence operator
(� or =). When we get the next operator, it is necessarily going to be of lower or equal precedence thans1 (since we have
only two precedence levels). Hence, we can blindly outputs1. On the other hand,s0 may still be of lower precedence than
the next operator. We output it only if it is of higher or equal precedence than the next one.

Note that the two variabless0 ands1 are being used as if they form a two-position stack. The variables1 is used for
storage (“pushing”) only ifs0 is filled. Moreover, we always clears1 (“popping”) before we look ats0.

If we have more than two precedence levels, then we need larger stacks for remembering other lower precedence oper-
ators. Moreover, brackets can be used build additional precedence levels within expressions. Brackets indicate that the
subexpression contained between them should be evaluated before any operator on the outside is applied. For example,
consider3 � (4+ 5) or 3 � (4+ 2 � (6+ 5)). Arbitrary levels of nested brackets would require a general stack to keep track
of operators, not just a few locations. Our (final) algorithm:

Procedure 3:
declare a new stacks
while there is more inputdo f

read one item from the input, call itx;
casex is

a number: outputx;
’(’: push ’(’ onto s;
’)’: pop operators from the stack until ’(’ is found,

copying the popped operators to the output and discarding ’(’;
an operator:if (top(s) = ’(’) then pushx ontos;

else if(precedence(top(s))� precedence(x)) then f
pop(s) until an operator of lower precedence thanx

is found, or ’(’ is found, or stack is empty,
copying the popped operators to the output;g

pushx ontos;
end case;

g
pop all operators in the stack, copying them to the output;

3

For example, parsing the expression3 + 4 � (5 + 6 � (7 + 8)) we go through the following stages:

remaining input x stack output
3 + 4 � (5 + 6 � (7 + 8))
+4 � (5 + 6 � (7 + 8)) 3
4 � (5 + 6 � (7 + 8)) + 3
�(5 + 6 � (7 + 8)) 4 + 3
(5 + 6 � (7 + 8)) � + 3 4
5 + 6 � (7 + 8)) (+ � 3 4
+6 � (7 + 8)) 5 + � (3 4
6 � (7 + 8)) + + � (3 4 5
�(7 + 8)) 6 + � (+ 3 4 5
(7 + 8)) � + � (+ 3 4 5 6
7 + 8)) (+ � (+ � 3 4 5 6
+8)) 7 + � (+ � (3 4 5 6
8)) + + � (+ � (3 4 5 6 7
)) 8 + � (+ � (+ 3 4 5 6 7
)) + � (+ � (+ 3 4 5 6 7 8

) + � (+ � 3 4 5 6 7 8 +
+ � 3 4 5 6 7 8 +� +

3 4 5 6 7 8 +� + � +

Homework Exercise 8
(Submit via the pigeon hole, near the school office, next Tuesday, by 8pm.)

1. For each of the expressions, draw the expression trees and give the prefix and postfix equivalents:

3� 4 + 5 � 6 3 + 4� 5=6 � 7 3 + (4� 5)=(6 � 7)

2. (Similar to a question from a previous final exam.) Write an algorithm for translating postfix expressions into prefix
notation. (There should be no parentheses in the output expressions.)Hint: Use a stack of expressions! Test it by
translating the postfix expressions you created in Question 1.

3. Use thefirst algorithm in paragraph 4 to translate the expression3 � 4 + 5 � 6 into postfix. Is the resulting expression
correct? Explain why not.

4. (From another old final exam.) Write an algorithm that takes as input aJava source code file and checks whether the
following brackets appear balanced in it:

f; g; (;); [;]

(Before you start developing your procedure try to think of the different ways in which brackets can fail to be balanced.
There are three of them!)

Announcement: Second Midterm Exam

The second midterm exam for Intro to Computer Science A will be held on Friday, 13th December, during the exercise class.
The material covered for the exam includes handouts 9 through 15. Here is a simplified list of topics covered in these handouts:

1. Algorithms with loops

2. Arrays and linked lists

3. Stacks and queues

Anybody who has a conflict with the exam time should follow the instructions on the course web page for requesting a conflict
exam.

4

